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A Knowledge-Based Approach to Automatic
Detection of the Spinal Cord in CT Images

Neculai Archip*, Pierre-Jean Erard, Michael Egmont-Petersen, Jean-Marie Haefliger, and Jean-Francois Germond

Abstract—Accurate planning of radiation therapy entails the such serious complications implies much smaller dosage toler-
definition of treatment volumes and a clear delimitation of normal  ances for the spinal cord than for the tumor.

tissue of which unnecessary exposure should be prevented. The s ful radioth i . | . d
spinal cord is a radiosensitive organ, which should be precisely uccessiul raciotherapy relles on a precise planning and a

identified because an overexposure to radiation may lead to thoroughimplementation of the radiation procedure. One of the
undesired complications for the patient such as neuronal dis- problems of radiotherapy planning addressed here, is that it re-
function or paralysis. In this paper, a knowledge-based approach quires that the different tissues of interest, including the tumor
to identifying the spinal cord in computed tomography images o the surrounding (vital) organs, are located with a high ac-
of the thorax is presented. The approach relies on a knowl- . . . .
edge-base which consists of a so-called anatomical structurescura_cy' At preseqt, rad|at|.on.therapy is being planned by a radi-
map (ASM) and a task-oriented architecture called the plan ©Ologist and a radiotherapist in concert, based on a careful anal-
solver. The ASM contains a frame-like knowledge representation ysis of a computed tomography (CT) scan that covers the tumor
of the macro-anatomy in the human thorax. The plan solver is and the surrounding tissues. The current planning procedure
responsible for determining the position, orientation and size of ont4ils manual delineation of the spinal cord in each separate
the structures of interest to radiation therapy. The plan solver . . .
relies on a number of image processing operators. Some arefshce followed_by an auto_matlc re_constructlon p(_arformed by the
so-called atomic (e.g., thresholding and snakes) whereas othersimage analysis workstation that is connected with the CT-scan-
are composite. The whole system has been implemented on aning device. Despite the existence of several semi-automatic
standard PC. Experiments performed on the image material approaches for planning of repetitive radiotherapy [4], [5], au-
from 23 patients show that the approach results in a reliable 15 matic detection of the spinal cord in CT images remains an
recognition of the spinal cord (92% accuracy) and the spinal - .
unresolved problem. A factor that complicates the analysis fur-

canal (85% accuracy). The lamina is more problematic to locate ; - ’ -
correctly (accuracy 72%). The position of the outer thorax is ther is the occasional presence of the spine around the spinal

always determined correctly. canal (Fig. 6).
Index Terms—mage interpretation, knowledge representation, Tumors are heterogeneous lesions, which exhibit growth pat-
medical imaging, radiotherapy, spinal cord. terns that are unique to each patient. As a consequence, the CT
images cannot be acquired according to a standardized protocol
I. INTRODUCTION but are subject to much inter-patient variation, e.g., compared

) . ) o with mammograms [6] or standard thorax radiographs [7] that
R ADIOTHERAPY is an important ingredient in the oftengre acquired in large numbers in Europe and North America.
complex treatment procedures that are initiated in other{@yis rather high amount of variation in our image material im-
suppress different kinds of malignant tumors. The purpose gddes the application of a standard low-level image processing
damage it causes to the surrounding healthy tissues. The SpiR@ur application, it should biexible and alsaransparentto
cord is an extremely radiosensitive, vital organ which should lpge radiologist and radiotherapist. A flexible approach can better
spared as much as possible. A certain amount of exposurg¢pe with a high amount of inter-patient variation. Transparency
radiation can induce a number of undesired neurological cogythe image processing algorithms ensures that the experts can
plications in the spinal cord (e.g., paralysis) [1]-[3]. The risk Gke over the image analysis, in case the automatic approach
fails to give the desired result. To cope with the requirements of
Manuscript received May 30, 2002; revised September 12, 2002. The Asfl@xibility and transparency, we present a knowledge-based ap-
ciate Editor responsible for coordinating the review of this paper and recofroach to automatic image analysis. The basic components of
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author. our system are the so-calledatomical structures maASM)
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was originally inspired by the manner in which a radiologist and
radiotherapist interpret the CT images before the actual radio-
therapy is planned.

A. Image Acquisition and Interpretation

In clinical routine, the radiotherapist performs a request con-
taining the questions which should be resolved by the radiolog-
ical examination. Examples of questions are: where is the tumor
located? how far is it from the spine? are there other healthy tis-
sues that will be exposed to radiation? etc.

The image acquisition is performed according to a standard
protocol, which contains general guidelines for how CT images
should be obtained for planning of radiotherapy. The details
of an acquisition are chosen such that the tumor of the partic-
ular patient is visualized in the best possible way. In general, a
number of aspects should be taken into account in order to ac-
quire CT images in such a way that the relevant findings can be
established. Wegener [9] points out that there is a strong rela-
tionship between what region, organ or lesion is examined and
how the image should be acquired, including imaging parame-
ters (slice thickness, slice interval, scanning time), and contrast
administration (presence/type of contrast agent, injection speed,
concentration).

After the CT images have been acquired, the interpretation
is performed by a radiologist and a radiotherapist in concert.
The image assessment relies on both morphological and densit-
ometric findings. Grimnes mentions a number of general aspects
that influence the interpretation of CT images [10]:

— the typical size and shape of the objects (bones, organs,
and other tissues);

— the variation in size and shape of the objects;

— the expected Hounsfield unit (HU) value range associ-
ated with each tissue;

—the variation in the HU value range associated with

each tissue;
(b) — typical response of an organ to the contrast tracer that
Fig. 1. The two types of slices. (a) Spinal canal completely surrounded by is used,
bone. (b) Spinal canal partially surrounded by bone. — organs and blood may change their expected HU range
in light of disease;
tecture consisting of the ASM and the plan solver. Following ~ — biological variation;
this description, the low-level (atomic) image operators are de- — and social context.

scribed in detail. In the experimental section, we report the re-The radiological analysis results insgnthesiof the clini-
sults obtained by applying our approach to the CT images akally relevant findings present the CT images, while taking the
tained from 23 patients before they underwent radiation theragyovementioned aspects into account. The ultimate goal of any
This paper ends with a discussion of the results and issues domputer system for image interpretation should be to produce
future research. such an image synthesis, either automatically or in an interac-
tive manner, e.g., through a dialogue with the radiologist.
Il. KNOWLEDGE GUIDED IMAGE PROCESSING

The anatomical information present in our image material s EXiSting Approaches to Knowledge-Based Image

very complex and hard to formalize in way that makes conf?teTPretation

puter-based image interpretation feasible. As argued ifrthe  The literature on computer-based image interpretation de-
troductionsection, ourimage material is characterized by a largeribes a large number of architectures, systems and approaches.
amount of inter-patient variation. This variation makes it diffiAmong the conventional approaches for image interpretation,
cult to develop standardized low-level image processing alggeme focus on architectural aspects of the scene (the spatial
rithms that make feasible an automatic detection of the spir@nfiguration composed by the objects that are present); in
cord in CT images. Instead, we present a novel, knowledgether approaches an extensive knowledge base and an advanced
based top-down approach to image interpretation. Our approaehsoning strategy form the major components [11]-[14]. Also
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TABLE |
RELATIONSHIPS BETWEEN STRUCTURES

Relation Description

isInside Objectl isInside Object2 < allmost all the voxels of Objectl are
included in Object2

isSorounded Objectl isSurrounded Object2 < allmost all the voxels of Objectl are
included in Object2 and Objectl is the only object which respect
Objectl isInside Object2

isAtMedialAxis | Objectl isAtMedialAzis Object2 < the center of Objectl is

approximately the same as the center of Object2

isNeighbor Objectl isNeighbor Object2 < the Objectl has a common border with
Object2

isAtLeft Objectl isAtLeft Object2 < allmost all the voxels of Objectl are at
the left border of Object2

isAtRight Objectl isAtRight Object2 < allmost all the voxels of Objectl are at

the right border of Object2

probabilistic systems were developed for knowledge-guiddae spine, etc., and on the procedural knowledge that is needed
image interpretation [15]-[17]. Several blackboard and othtr describe how the CT images should be analyzed [26], [27].
knowledge-based systems were developed specifically for
interpretation of medmal Images: The.ERNEST _system hés. Knowledge Representation in Medical Image Analysis
been developed for interpretation of scintigraphic images and
magnetic resonance (MR) images [18]. The system VIA-RAD We will present an approach for semi-automatic image inter-
[19] applies four diagnostic strategies, obtained from thmretation that uses a knowledge base to link different low-level
radiological domain, to perform image interpretation. Bratn image processing algorithms to a particular request. For a solu-
al. [20] present a knowledge-based system for lung detectitian of the problem addressed—spinal cord detection—a combi-
in CT images. A system for object recognition in CT imagesation ofstructuralandproceduralknowledge suffice, because
of the brain is presented in [21]. An architecture has bedime pathologic growth process of the tumor does not have to be
developed for interpretation of abdominal CT images [22]. faken into account. This demarcation implies that our knowl-
task-based architecture to interpretation of MR images of tkege base should contain medical knowledge about organs and
brain is introduced by Gonet al.[23]. possible pathologic structures, i.e., components of the tumor.
In computer-based systems for interpretation of medical ifihe knowledge-base is used to guide the image interpretation
ages, one or more of the following archetypes of knowledge mhyt also to specify the parameters of the basic algorithms. The
be modeled [24]: architecture presented here is inspiredfitame systems [28].
—structural knowledgewhich can contain information aboutEach anatomical structure is represented as a prototype, and
the physical world (human anatomy, e.g., normal structures suth properties aslots which may obtain values by attached
as lungs, spinal canal, lamina, spinal cord, thorax, etc.); demons
—dynamic knowledgevhich can contain information about Structural Knowledge:The core of our system is the
possible normal and abnormal processes (human physiolapycalled ASM, which was presented earlier in [8]. A set of
and pathology); properties (related to shape, position, densitometric ranges) is
—procedural knowledgevhich divides arequest (e.g., imageaused to characterize each of the normal structures, the organs,
synthesis) into a sequence of subtasks that can be performedhbyes and the vascular system, that are represented in the ASM.
specific image processing algorithms. The spatial arrangement of these objects is represented as a
In some applications, a satisfactory image synthesis candmmantic network. A very simple grammar was also introduced
obtained from solely one type of knowledge. For example, that makes it feasible to express the semantic relations that
perfusion analysis of bone tumors dynamic knowledge is suffiertain to our application, see Table I.
cient for making a distinction between viable tumor and necrosisProcedural Knowledge:The structural knowledge base is
[25]. In other applications, all three types of knowledge may bemerged with a task oriented architecture, pfen solver which
prerequisite for a successful image synthesis. Spinal cord detemntains the procedural knowledge that is needed to perform
tion and subsequent planning of radiotherapy rely primarily dhe image interpretation. The involved clinicians make use of
structural knowledge components: where is the tumor locate-called reference objects (e.g., body or lamina) to direct their
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[ll. A NATOMICAL STRUCTURESMAP
CT Medical image \
(A slice in which the spinal cord is completely "

The ASM establishes a number of spatial relations between

. surrounded by the vertebra) § the objects that are typically distinguished in the CT images
Diniaininieininiee l """""" - used for planning of radiotherapy in our clinic. The architec-
e e . ture of the ASM lends its inspiration from frame systems, a
Specify Task: Find Spinal Cord well-known concept in the artificial intelligence literature. We
e "‘l’“"" o chose to represent the anatomical information in two—dimen-
sional (2-D) slices. More specifically, the ASM represents spa-
D autiaots it ol coutoah i Lot tial relations between the objects (e.g., spine, lamina, and tumor)
and “Find Spinal Canal" as well as the general category of each object: bone, air and tis-
sues (see Fig. 3). We discern these particular categories of tis-
; Find Body Contour ) » sues for the following reasons. Objects belonging to the first two
L categories have either a very high or a very low HU level (bones
P N versus, e.g., the air compartment of a lung). For these two types
> Find Lamina » of objects, a threshold-based technique is in most cases suffi-
J cient for a reliable segmentation result. Tissues (e.g., organs),
, A on the other hand, cannot be identified by thresholding within a
» Find Spinal Canal » specific HU range. For objects belonging to this third category,
~ g areliable segmentation needs to be based on two kinds of infor-
! mation: the locations of the already detected reference objects
and the results of texture segmentation.
Solve “Find Spinal Cord” using the Body Contour, Lamina, The main object represented is thedy contour which
and the Spinal Canal already identified .
comprises other organs. It has a so-caitetkpendensegmen-
{ tation scheme as it is possible to detect the body by a basic
ST T T T s 5 image processing algorithm, in this case by thresholding (see
:‘ Qutput: the spinal cord : Section V-A-l)

""""""""""""" The structures that are more difficult to segment include the

spine, the lamina and the spinal canal. The spine contains mainly

Fig. 2. Plan for a task: general architecture in the case of spinal cd¥PN€ SO it has a very high HU range, and thresholding is used to
identification. detect it. All the subparts of the spine consist of mainly bone

cortex so a threshold method is used to detect these objects.
g’lhe spinal canal consists mainly of tissue but is completely sur-

focus of attention. Although the architecture of the plan solv NP . .
was originally inspired by the approach followed by the inr_ounded by the spine, i.&Spinal CanalsInsideSpine We use a

volved clinicians, the task-based structure also makes it possi;)j%fggr?r\]'glngasncgehrgg t; ﬁ?%mc%r:tlrtégrlce;x b:f: dusveit:}hfhzogiir
to recognize and locate complex objects while benefiting fro P 9 P

more simple (basic) object detections. Algorithms developéaLI':r.]d'TIg bone (d|ﬁerer;(:t(ra]H:J bonef—ussus), Setﬁ Sggtlon \é'A'S'
for the recognition of complex objects use so-callefrence inally, we represent the lung information, the ribs and any

objectsto set their initial configuration or constrain the finalIung tumors. Our approach to lung tumor detection is described

solution. in [29].
The task oriented architecture is responsible for running
the plan solver, which dispatches a task, e.g., detect spinal IV. THE PLAN SOLVER

canal, into subtasks [23]. Which subtask should be dispatched,

dependghe reference object©bject. is reference object for The ASM is used as aid when partitioning a request (e.g.,

Object, if: locate spine) into subtasks and further into atomic image

. there is a direct, spatial relation betwe@bject, and processing task; .tha.t are performed.by dedicated routines. This
hierarchical partitioning takes place in than solvermodule,

Object, (e.g.,isNeighborisinsidg, and o : . : : o
. Object, has an segmentation algorithm that does not d\év_h|ch links the spatial relations in the ASM with atomic image

pend orObject,. Hence Object, can be detected Withoutprocessing algorithms. The plan solver usesirmeritance
any knowledgé. onjec,t schemédo determine the appropriate segmentation approach for
L.

a particular object or tissue (see Fig. 4). An object connected
When the plan-solver is called with the requEstd Object,, with another (reference) object by @A relationship inherits

it identifies the subtasks that should be performed in order tioee segmentation method of that object.

fulfill the request, i.e., which objects are reference objects to We make a distinction between different types of atomic seg-
Object.. The list with reference objects found is the list withmentation methods that are used for object recognition in our
the subtasks to be performed. The plan solver module reliesapplication: the threshold-based methods (for the bones in this
a global positioning system (along the axesy, z), (Fig. 5) case, butalso for the lungs in relation to lung tumors) and region
which maps each of the detected organs to world coordinatebased methods (for the spinal canal in this case).
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isA Has isA

isA
‘ - @
@ IsAtLeft isA ] @‘
i isA
Border Lung Tumor
IsAtMedia

Isinside
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Spinal @
Lamina Canal

N
IsiAtMedialAxis

Spinal
Cord

Isinside

Isinside IsAtleft

IsAtMedialxis Right
Body Contour

IsNeighbour

Fig. 3. Relationships between structures, A8M

For the threshold-based methods, it is important to restrietrence mechanism proceeds by looking for the objects linked to
the area to which they are applied. This is accomplished bgminaby the relatiorisinside. The only object whereamina
using so-called reference objects. Reference objects are spiscirside, is the body (body contour), which this way becomes
fied by the following relations in the ASMsAtLeft , isAtRight, a reference object fdtamina So the taskind Laminahas as
isInside andisSurrounded, which are applied in a recursivesubtasksFind Body Contouandthresholding the latter takes
top-down detection procedure. place only inside th&pine

For region based approaches, the reference objects arkh the second exampl&jnd Spinal Canala dedicated seg-
found between the objects with the relationsigpleighbor mentation method is specified: region based segmentation. So
or isVerticalAxis. When a certain (sub)requesind Object, we are looking for the objects which could give us a starting
is dispatched, the plan solver tries to fulfill the request bigointfor the region growing algorithm. Thus, we are looking for
choosing the appropriate segmentation methods. These tfo0bjects connected with relationshipileigbor, isAtVerti-
either specified directly (for certain organs like the spin&@lAxis, which areBody ContouandLamina Body contouhas
canal, which is detected by region growing), or indirectly bifS OWn segmentation scheme, which is why itis a reference ob-
inheritance from the reference objects by the relationsfp 1€Ct for theSpinal Canal TheLamina as itis presenteq earlier,
Depending on the applicability of the chosen segmentatif}dS @s reference objeBbdy Contourwhich does not involve
method on the particular image slice, the reference objects 46 SPinal Canal So theLaminais the second subtask for the
located successfully. taskFind Spinal Canal

We illustrate the functionality of the plan solver by two ex-
ample requestsEind LaminaandFind Spinal Canal The first V- SPINAL CORD THREE-DIMENSIONAL (3-D) DETECTION

object,Laming does not have its own dedicated segmentation The 3-D image interpretation method presented in this paper
methods (no demon present) so Lamina is found by the inhefias developed in an attempt to model certain aspects of the
tance structure based on the lislkh. LaminaisA Sping which  knowledge that is used for human interpretation of CT images
also does not have its own dedicated segmentation method.dfithe thorax. An organ of interestis segmented by identifying in
nally, LaminaisA Bonewhich has a thresholding segmentatioeach slice the contours of interest, and by using information ob-
method attached. Asaminais connected by the linisA to tained from adjacent slices to improve the result further. For the
Bonevia Spine Laminais segmented by thresholding. The inspinal cord, the occasional presence of spine around the spinal
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Fig. 4. Relationships between the ASM and ifeen solver All relationships between structures are presented, and gigheolverside segmentation methods
as well as parameters for each of it. Also the connections between structures and corresponding segmentation methods are presented.

canal complicates the delineation of its contour. Moreover, tlhe Two-Dimensional (2-D) Spinal Cord Detection Based on
same segmentation scheme cannot be used in all the sliceshthASM

this section, we first present the 2-D segmentation of spinal cord For the task of identifying the spinal cord contour in a slice,
which is based on the ASM and the plan solver that are are plan solver is dispatched. Its subtasks rely on information
plied to the slices in which the spinal canal is completely sufrom the ASM. Fig. 2 illustrates how the spinal cord is being
rounded by spine. Subsequently, the procedure responsibledetected by our knowledge-based approach. The structures that
detection of the 3-D spinal canal contour is described. Finallyid the detection of the spinal cord are body contour, a region of
the methods used in the case of failure of the standard protiee spine (called lamina), and the spinal canal (see also Fig. 5).
dures (in the slices where the spinal canal is not surrounded byl) Body Contour Identification:The transition between the
spine) are presented. body (contour 1 in Fig. 5) and the outside air is very strong,
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Body Contour

Spinal Canal
(6]

Spinal Cord

— @

Mo Hame, M HOP. La Chaux-d
it

Fig. 5. Contours detected for spinal cord detection. Fstly contouris
detected, thehaming followed bySpinal Canalnd finally Spinal Cord

which makes it rather straight-forward to find the contou
around the thorax. Moreover, the body is generally the on
object in the image. The voxels with a gradient exceeding
threshold value are likely to form part of the border between
body and air. Based on correlational analysis of the HU hi
tograms of the body and air in a pilot study, the value ofas
found. The algorithm 1 is used to delineate the contour arou
the body.

Algorithm 1 Body Contour Identification

Require: Imagel
Ensure: the abdomen contour

. . . . b
1. compute the gradient of the image using a Sobel-like oper- )
ator: Fig. 6. MIC in the spinal canal polygon. (a) The Voronoi Diagrams used for

. . . . . detection of the medial axis, which gives the center of MIC. (b) This solution
2: in the middle column of the image, search the first plxglf,p”ed for spinal cord detection. 9 ®)

which has the gradient higher than a threshgld

3: this is the first point on the body contour;

4: starting from this point, follow in the clock-wise direction th
high gradient, until it reaches the first point of the contour.

Lf the abdomen (centered at the medial axis), thresholding in
most cases finds the lamina accurately.

3) Spinal Canal Detection in Two Dimension$he con-
tours of the lamina and thorax are used to detect the spinal canal
(contour 3 in Fig. 5). There is a strong transition from lamina to

Because of its importance (all the other structuredmsigle the spine (large HU difference bone-tissue). Consequently, a re-

the body contour), the body contour identification is a subtagjon growing algorithm is used [30]. Two problems are related
which is performed to accomplish each other request. to the region growing algorithm. First, the homogeneity of the
2) Lamina Identification: The lamina contour (contour 2 in pixel intensities in the region may not be guaranteed. To cope
Fig. 5) uses body contour as a reference object. In the ASM, tlvéh this problem, a histogram based method [31] is combined
segmentation scheme associated with the lamina is a threshwitt the a priori knowledge about the typical HU range of the
operation. The threshold operator is applied to the voxels ttginal canal. A pilot experiment has been performed to find the
occur inside the body contour. The lamina has a very high Hiptimal range of HU values.
range (650—1200 HU). This is not the only structure with such A second problem is how to set the seed point—the starting
a high intensity range. Other structures like #ternumand point of the region growing algorithm—automatically. This is
scapulamight also be detected by application of a threshold opecomplished by using the relative locations between body con-
erator. By restricting the threshold operator to a smaller regitour and lamina in relation to the spinal canal. More specifically,
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the spinal canal and the spine have the same medial axis (r@p- k£ «— 1
resented by the relationshipAtMedialAxis). So, by detection 4: while NOT VerifyCandidateSpinal-
of lamina(which isisInside the spine), the position of the seed Canal(SCC) do
point for the spinal canal is obtained (being on the medial axds &k «— k +1
and higher than the top limit démina). 6: SetActiveSlice (k)
4) Spinal Cord Detection in two dimension¥he problem 7: SCC  « DetectSpinalCanalContourUsin-
of spinal cord detection (contour 4 in Fig. 5) reduces to finding gASM)
the maximal inscribed circle in the polygon that represents tBe end while
spinal canal (see also Fig. 6). The problem is solved by co®- /#*in the slice k, spinal canal is iden-
puting the skeleton of the polygon using an efficient algorithm tified*/
[complexity O(n log n)], which was presented in [32] and10: ListSCContours (k) «— SCC

[33]. 11: for j=k-—1to 1 do
_ o . _ 12:  SetActiveSlice (9)
B. Spinal Canal Detection in Three Dimensions 13:  SCCNew — DetectSpinalCanalCon-

The problem of 3-D spinal canal detection is based directly tour(SCC)
on the procedure for spinal canal detection in two dimensiod4: if NOT VerifyCandidateSpinal-
presented in Section V-A-3. However, this scheme cannot beCanal (SCC, SCCNew) then
applied successfully to all slices because the spinal canal is bt /*spinal canal not correctly identi-
always surrounded by the spine. Instead, the algorithm for 3-Dfied so use snakes*/
spinal canal detection first identifies the spinal canal each sli¢gé =~ SCCNew « ModifyUsingSnake (SCC)
using the algorithm 2. The first step is to apply the 2-D algorithdh7:  end if
presented in the previous section to identify the spinal canali8: SCC « SCCNew
the first slice. It uses no information about whether the spind®:  ListSCContours(j) «+ SCC
canal is surrounded completely by bone. A procedure verifi@é§: end for
(line 4) whether the spinal canal was identified correctly. Thl: SCC « ListSCContours(k)
procedure uses information about the position, the intensity add: for i =k +1 to nrTotalSlices do
the area of the region detected by the 2-D algorithm. If the &3:  SetActiveSlice (i)
gorithm failed to identify the spinal canal correctly in the firs4: SCCNew < DetectSpinalCanalContou-
slice, the same 2-D algorithm is applied to the next slices (linesrUSingASM ()
4-8), until it succeeds in finding the contour of the spinal cangb:  if NOT VerifyCandidateSpinal-
in as many slices as possible. Canal (SCCNew, SCC) then
Once a contour around the spinal canal has been found, &6 /*spinal canal not correctly identi-
algorithm uses it as a reference in the neighboring slices in twofied with ASM*/

ways: First, it is used to verify the candidate contour for spinl’: SCCNew < DetectSpinalCanalCon-
canal in the adjacent slices (lines 14, 28; assuming a small diftour(SCC)

ference between the contours of the spinal canal in two cons@8- if NOT VerifyCandidateSpinal-

utive slices). The second way is to use a spinal canal contour a§anal (SCC, SCCNew) then

information to guide the segmentation scheme in the adjac@% /*spinal canal not correctly iden-

slice (in case the 2-D algorithm fails to identify the spinal canal tified so use again snakes*

correctly—lines 13, 27). These two applications of the spindpP: SCCNew «— ModifyUsingSnake (SCC)
canal contour already identified are presented in the next séd- end if

tion. In thekth slice, the contour of the spinal canal is detected?2:  end if

(line 10). The 3-D algorithm proceeds from the— 1 — 1 33: SCC « SCCNew

andk + 1 — nrTotalSlices slices, applying the 2-D detection34:  ListSCContours(i) «+ SCC
algorithm. In case of failure, it chooses one of the alternatia®: end for

methods presented in the next section. The evolution of the al-

1511

gorithm in two consecutive slices is illustrated in Fig. 7.

Two procedures are used to check the results of the spinal

cord detection algorithms. The first one (line ¥rifyCandi-

Algorithm 2 Spinal Canal 3-D Detection dateSpinalCanal(SCCses specifia priori knowledge about
the spinal canal regiorposition area intensity andshape If

Require:  medical exam 3-D, nrTotalSlices the properties of the candidate comply with the predefined pa-
Ensure: the list with spinal canal con- rameters of our model, the region is recognizedmral canaj

tour identified in all the slices of the otherwise it is rejected.

exam, ListSCContours The second procedure (line 1AJerifyCandidateSpinal-
1: SetActiveSlice (2) CanalSCC, SCCNew) uses a contour obtained in an adjacent
2. SCC «— DetectSpinalCanalContourUsin- slice, against which it verifies the properties of the new contour

gASM) detected in the current slice. If the differences between the two
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(b)

© (d

Fig. 7. Progress of our algorithm for spinal cord identification. (a) In the first slice identify the body contour. (b) Find a spine part. (c) Usomg tharb
identified, find the seed for the Region Growing, which identifies the spinal canal. (d) Apply MIC algorithm to find the spinal cord. (e) Propagételthanal
contour in the next slice and improve it using snakes. (f) Apply again MIC to find the spinal cord.

contours with respect tgosition area, intensity andshape fails because it cannot identify the lamina region, even when
are smaller than a set of prespecified ranges, the new candidh&e spinal canal is completely surrounded by bone cortex. In
contour is recognized as being thginal canal these cases, a region based segmentation technique works well
] . ) and is applied to the slice (lines 13, 27). The problem is to find
C. When Segmentation of the Spinal Canal Fails the seed point for the region growing process. We use as seed
In case the general scheme based on the default algoritrpagt the center of gravity of the spinal canal region identified
applied by the plan solver fails to detect an appropriate contdgaran adjacent slice, thereby assuming spatial continuity of the
around the spinal canal, the system backtracks and uses eithepiaal canal. To compute the center of gravity of a region given
region based method or snakes. Both use the (already approwsd functionf, statistical moments are used
contour around the spinal canal detected in an adjacent slice for U
initialization. . . . Mpq = / / aPy? f(x,y) dx dy
1) Finding the Spinal Canal by Region Growin@cca- oo J oo
sionally, the general scheme for detection of the spinal canal withp, ¢ =0,1, 2, ... Q)
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(in the continuous case) and VI. EXPERIMENTS
. — PP j1f (i, j withp, ¢ =0, 1,2, ... We evaluated our knowledge-based approach by applying the
. Z ; 51 d) system consisting of the ASM and the plan solver on 3-D CT

datasets of 23 real patients, all scanned atth€haux de Fonds
for the discrete case. Thus, the center of gravity is defined ashospital in Switzerland. All 23 patients had a tumor present in
_ myo  moy the thorax. After the CT examination, each patient underwent
x = oo and y= oo radiotherapy in the hospital. Our population consisted of 9 male
and 14 female patients. Their age varied from 37 to 79 years with
2) The Use of Snakedn case the general scheme fails t mean of 58 years and a median of 59 years. The number of
detect the spinal canal, e.g., because the spinal canal is not cgm-slices per exam varied from 9 to 97 with a mean of 45 slices
pletely surrounded by the spine, the system uses a snake baggfla median of 38 slices. The images were obtained from a CT

method [34]. . _ scanner from Picker and were acquired with a slice thickness of
Given the spline(s) = ((s), y(s)), the energy function of 3 mm and an inter-slice distance of 3 mm.
the snake is defined as We evaluated our approach according to two critesizcu-

1 racy andcomputational costThe accuracy is defined as the rel-
Eiotal = / Eint(v(s))+ Eimage(v(s))+Econ(v(s)) ds. (2) ative number of acceptable contours of a particular type that can
J0 be detected in an exam. The computational cost is the total exe-
Ei, represents the internal energy of the spline, composed dftion time (in seconds) required to find all contours of a partic-
first-order term controlled by(s), which makes the snake actular type in an exam (one contour per slice). We distinguished
like a membrane, and the second-order term controlle@(ly, four types of contour: Spinal cord, Spinal canal, Lamina, and

making the snake to act like a thin plate (outer) Thorax. Whereas the computational time is straight-for-
ward to compute, medical expertise is needed to assess the con-
Eine = ((8)[v5(8))? + B(5)|vss(5)]?)/2 (3) tours that were found by our system. A radiologist skilled in
o radiotherapy planning was asked to accept or reject each con-
Eimage is given by tour in each slice among all 23 patients. In our case, evaluation

was performed using a visual inspection of the contours pro-
jected on the CT image slices. The radiologist decides for each

so that the snake is attracted by the contours with large gP-tn€ contours obtained with our system whether it is located
dients. FinallyE.., incorporates the external forces specifie@€Cisely or not. The maximal deviation around the spinal cord
by the user. The problem of initialization of the snake is solvégPntour (measured as the distance perpendicular to the contour)
using the result obtained in an adjacent slice. We chose a gre8ggePted by the radiologists is 1 mm.
strategy as in [35] to search for the best snake contour.

Combining these energy equations results in the snake al@e-Accuracy
rithm 3. The gradient is hereby approximated by a Sobel oper-|n Taple 11, results of the experiments on the real clinical data
ator [31]. are shown. The accuracy is computed as the number of slices
in the exam in which the particular contour was located cor-
rectly. In Exam 1, for example, 91.8% of the contours were lo-

Eimage = _|VI(:E7 y)|2 (4)

Algorithm 3 Snake General cated around the spinal cord with a sufficient precision. The av-
erage accuracy of the spinal cord contours among all patients
Require: Image 1, snakes parameters a, 7, is 91.7%, the average accuracy per slice lies within the range
window size, contour v, mnrPoints 80% to 100%. The spinal canal is more difficult to detect. The
Ensure: the contour v modified average detection accuracy among all patients is 85.3%, the av-
1: G — ComputeGradient (I) erage accuracy per slice lies within the range 60% to 100%. The
2: Vi=1,nrPoints((i) — 1 lamina is the most difficult structure to detect for our approach.
3: finish «— false The average accuracy among the 23 patients is 72.1%, the range
4: while NOT finish do is 33%—-100%. Finally, the thorax is located correctly in all slices
5. for i=1to nrPoints do among all 23 patients. The body is easy to detect because of the
6 ModifyPoint(i, newX, newY) sharp transition from the surrounding air to human tissue.
7 v(i) — (newX, newY) Among the four structures, the accuracy of each contour
8 Evaluate () is rather correlated between the spinal canal and spinal cord,
9 end for 0.594, the correlation coefficients between the other types of
10: if ConditionsFinishOk() then contours are all below 0.15.
11: finish — true Due to the parameters used for the snakes algorithm which
12:  end if segments the spinal canal, the contours detected contain just
13: end while false positive regions. Then, by the use of MIC algorithm (the
14: return o maximum circle approximation for the spinal cord), occasion-

ally the spinal cord contours contain false positive as well.
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RESULTSFROM THE EVALUATION OF OULASB(LSEEI\I/: USING THECT IMAGES OF 23 PATIENTS
Medical | No. of Age Sex Sp. Cord Sp. Canal Lamina Thorax
Exam ID | Slices | (years) Succ. Tezec | Succ. Tezec | Succ. Texec | Succ. | Tewec
Ezam 1 37 68 F 91.9% 65s 91.89% 62s 48.64% 42s 100% 34s
Ezam 2 87 60 M 94.26% 153s 93.10% 148s 98.85% 92s 100% 73s
Ezam 3 27 58 F 88.89% 40s 85.18% 39s 74.07% 258 100% 18s
Ezam 4 70 62 M 91.43% 108s 90% 105s 62.85% 68s 100% 52s
Ezam 5 87 59 F 93.11% 177s 89.65% 173s 82.75% 112s 100% 90s
Ezam 6 15 61 M 86.7% 31s 80% 30s 100% 16s 100% 13s
Ezam 7 31 50 F 93.55% 62s 87.09% 59s 80.64% 25s 100% 18s
Ezam 8 9 54 F 100% 12s 100% 12s 100% 7s 100% 5s
Ezam 9 22 51 F 95.45% 558 95.45% 558 77.27% 17s 100% 13s
Ezam 10 97 53 F 92.78% 1358 91.75% 132s 77.31% 83s 100% 61s
Ezxam 11 38 48 F 92.10% 61s 84.21% 57s 78.94% 38s 100% 32s
Ezam 12 22 68 F 95.45% 34s 81.81% 33s 90.90% 18s 100% 14s
Egzam 13 20 52 F 95% 38s 60% 38s 80% 16s 100% 11s
Ezam 14 75 63 M 80% 125s 62.66% 122s 45.33% 78s 100% 60s
Ezam 15 22 66 F 95.45% 358 90.90% 358 86.36% 20s 100% 14s
Ezam 16 50 37 F 88% 99s 82% 98s 76% 48s 100% 37s
Ezam 17 18 43 F 88.88% 28s 88.88% 27s 83.33% 17s 100% 13s
Ezam 18 55 62 M 98.18% 94s 92.72% 93s 40% 458 100% 32s
Ezam 19 83 70 M 93.97% 141s 90.36% 139s 36.14% 86s 100% 69s
Ezam 20 45 64 M 95.55% 72s 86.67% 70s 33.33% 45s 100% 35s
Ezam 21 40 56 F 87.5% 69s 80% 68s 95% 43s 100% 34s
Ezam 22 44 79 M 84.09% T7s 79.54% 76s 54.54% 43s 100% 33s
Ezam 23 37 55 M 86.48% 66s 78.37% 64s 56.75% 44s 100% 358
In general, when the other contours were detected wrongly, VII. DISCUSSION

the major cause was the mislabeling of the neighborrigr- The major contribution of this article is that a top-down

ence objectsuch as the lamina. The problems in most cases .
. s npwledge-based system has been developed for flexible
arise in CT exams where the standard acquisition protocol ha i ; .
erpretation of CT images. Our system can cope with a large

not been followed such that one or more unexpected obje'c'}s . . L . :
: : arrhount of inter-patient variation. Not only is the size and
(e.g., arms) were present in the images. The presence of sUc

; . shape of the tumor unique to each patient, also the acquisition
objects affects the symmetry of the CT image. parameters of the CT scan vary considerably. The ASM is a

means to represent, in a compact form, important fragments
of the anatomic knowledge that is used by a radiologist while
Our algorithms were implemented on a PC Windows manterpreting the CT images. The plan solver contains the
chine, with a processor Pentium Il 500-MHz, 512-MB RAMprocedural knowledge: how to detect particular anatomical
As presented in Table Il, the spinal cord detection is obtainstfuctures one-by-one. The knowledge-based architecture often
practically in real time. The worst case is when the snakes anakes it possible to cope with exceptional conditions which
used in all the slices. The required amount of interaction is minecur in a specialized clinic. Even if our approach fails, it
imal and most often consists of manual correction of the errdsspossible for the radiologist to “take-over” and correct the
in a couple of slices. wrongly placed contours of, e.g., the lamina. Moreover, it
In the Anatomic Structures Map, about ten different strués possible to identify the cause(s) of failure because of the
tures are represented so the query process performed by the pamsparent knowledge-based architecture.
solver terminates quickly. The most time consuming routine is The major drawback of our approach is the time it takes to for-
the Snake algorithm, which optimizes the location of the contonralize the anatomical and procedural knowledge that is needed
by minimizing the total energy. All other routines are performetb implement the ASM and the plan solver. This problem is well-
in less than a second per slice (0.3—0.5 s) in our current apgdirown from the research in expert systems and has been called
cation. The snake algorithm is only applied to slices where tlige knowledge elicitation bottlenecilthough the ASM may
spinal cord is not surrounded by the spinal canal, which bojpartly be reused for, e.g., automatic interpretation of MR images
down to about half of the slices in a typical patient. of the thorax, reverse engineering would be required to tailor

B. Computational Cost
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the plan solver such that is applies the appropriate atomic (sége objects fails. Flexibility is required because the scan pro-
mentation) algorithms. Itis clear that a different image modalitypcol varies among the patients depending on the location and

will, in general, require different low-level operators to find theize of the tumor.

same anatomic structures. We furthermore wish to add that the
rather confined macro-anatomy of the human thorax makes it
well-suited for representation in a frame-like hierarchical rep-
resentation scheme such as the ASM. Representation of, e.gy
the human vascular system would be virtually impossible.

A final question addresses the transferability of the developed
method to other hospitals. TRECOM standard (respected by 7
our system), and the use of HU should work in a hospital with
well-calibrated CT scanners. However, we are about to test thé®]
system in another hospital in Switzerland. About the featurey;
of the system, probably the most important one is the use of
a knowledge-based image processing philosophy, keeping iTS]
mind that relying solely on the classical image processing al-
gorithms are insufficient for detecting automatically anatomical
structures in CT images. Another important aspect of this ap-
proach is the way the 3-D processing is performed, resemblin
the procedure performed by the radiologist. Finally, this system
was tested on images from 23 real patients obtained from a local’]
hospital in Switzerland, and the results were evaluated by spe-
cialists in radiology. [8]

6]

VIIl. CONCLUSION

Radiotherapy of malignant tumors located in the vicinity of 9]
the is spinal cord requires a very accurate planning to avoigio]
causing unnecessary damage in this vital organ. The spinal cord
is a highly radiosensitive organ; even moderate doses of radia;
tion can cause different complications such as paralysis of the
patient. In this article, we present a knowledge-based approach
to interpretation of CT images. The approach is based on tw[)1 2]
closely linked knowledge bases: the ASM and the plan solver.
The former represents structural (static) knowledge of the macrg
anatomy in the human thorax. The latter represents the procg—gl
dural knowledge—the scripts that are used for detection of the
different objects of interest. The plan solver combines atomi¢!4]
and composite image processing operators using an inheritance
scheme. Which (composite) operators inherit an atomic opefis]
ator, say a shake algorithm, is derived from the ASM, which
contains the structural knowledge. [16]

The knowledge-based approach was implemented on a stan-
dard PC. The system was subsequently validated on CT ima
data from 23 patients who were to undergo radiotherapy. Th
plan solver was used to locate the following four kinds of ob-
jects: the spinal cord, the spinal canal, the lamina, and the bod¥8l
(outer thorax). The highest accuracy was obtained for the bodylg]
which was located correctly in all slices among the 23 patients.
The spinal canal was located with an accuracy of 92%, the spin&0!
canal with an accuracy of 85% and the lamina with an accuracy
of 72%. [21]

The major advantage of our knowledge-based system com-
pared with state-of-the-art low-level solutions lies in its trans-
parency and its flexibility. The system is transparent to the rag2]
diologist because parts of his/her medical knowledge is repre-
sented in the ASM and the plan solver. Transparency makes [ﬁgl
easier to take over from the system in case the identification of

e
7]
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