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A Knowledge-Based Approach to Automatic
Detection of the Spinal Cord in CT Images

Neculai Archip*, Pierre-Jean Erard, Michael Egmont-Petersen, Jean-Marie Haefliger, and Jean-Francois Germond

Abstract—Accurate planning of radiation therapy entails the
definition of treatment volumes and a clear delimitation of normal
tissue of which unnecessary exposure should be prevented. The
spinal cord is a radiosensitive organ, which should be precisely
identified because an overexposure to radiation may lead to
undesired complications for the patient such as neuronal dis-
function or paralysis. In this paper, a knowledge-based approach
to identifying the spinal cord in computed tomography images
of the thorax is presented. The approach relies on a knowl-
edge-base which consists of a so-called anatomical structures
map (ASM) and a task-oriented architecture called the plan
solver. The ASM contains a frame-like knowledge representation
of the macro-anatomy in the human thorax. The plan solver is
responsible for determining the position, orientation and size of
the structures of interest to radiation therapy. The plan solver
relies on a number of image processing operators. Some are
so-called atomic (e.g., thresholding and snakes) whereas others
are composite. The whole system has been implemented on a
standard PC. Experiments performed on the image material
from 23 patients show that the approach results in a reliable
recognition of the spinal cord (92% accuracy) and the spinal
canal (85% accuracy). The lamina is more problematic to locate
correctly (accuracy 72%). The position of the outer thorax is
always determined correctly.

Index Terms—Image interpretation, knowledge representation,
medical imaging, radiotherapy, spinal cord.

I. INTRODUCTION

RADIOTHERAPY is an important ingredient in the often
complex treatment procedures that are initiated in other to

suppress different kinds of malignant tumors. The purpose of
radiation therapy is to eradicate the tumor while minimizing the
damage it causes to the surrounding healthy tissues. The spinal
cord is an extremely radiosensitive, vital organ which should be
spared as much as possible. A certain amount of exposure to
radiation can induce a number of undesired neurological com-
plications in the spinal cord (e.g., paralysis) [1]–[3]. The risk of
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such serious complications implies much smaller dosage toler-
ances for the spinal cord than for the tumor.

Successful radiotherapy relies on a precise planning and a
thorough implementation of the radiation procedure. One of the
problems of radiotherapy planning addressed here, is that it re-
quires that the different tissues of interest, including the tumor
and the surrounding (vital) organs, are located with a high ac-
curacy. At present, radiation therapy is being planned by a radi-
ologist and a radiotherapist in concert, based on a careful anal-
ysis of a computed tomography (CT) scan that covers the tumor
and the surrounding tissues. The current planning procedure
entails manual delineation of the spinal cord in each separate
slice followed by an automatic reconstruction performed by the
image analysis workstation that is connected with the CT-scan-
ning device. Despite the existence of several semi-automatic
approaches for planning of repetitive radiotherapy [4], [5], au-
tomatic detection of the spinal cord in CT images remains an
unresolved problem. A factor that complicates the analysis fur-
ther is the occasional presence of the spine around the spinal
canal (Fig. 6).

Tumors are heterogeneous lesions, which exhibit growth pat-
terns that are unique to each patient. As a consequence, the CT
images cannot be acquired according to a standardized protocol
but are subject to much inter-patient variation, e.g., compared
with mammograms [6] or standard thorax radiographs [7] that
are acquired in large numbers in Europe and North America.
This rather high amount of variation in our image material im-
pedes the application of a standard low-level image processing
technique. For an image processing algorithm to be successful
in our application, it should beflexibleand alsotransparentto
the radiologist and radiotherapist. A flexible approach can better
cope with a high amount of inter-patient variation. Transparency
of the image processing algorithms ensures that the experts can
take over the image analysis, in case the automatic approach
fails to give the desired result. To cope with the requirements of
flexibility and transparency, we present a knowledge-based ap-
proach to automatic image analysis. The basic components of
our system are the so-calledanatomical structures map(ASM)
[8] and theplan solver, a task-oriented module that controls
the sequence in which the subtasks are performed. The ASM
and the plan solver are designed such that they capture parts of
the anatomical and procedural knowledge that is currently being
used for manual image interpretation.

This paper is structured as follows. First, existing approaches
to knowledge-based image interpretation are discussed. Then,
we consider different archetypes of knowledge that are presently
used to solve the spinal cord detection problem. Subsequently,
we give a detailed description of the knowledge-based archi-
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(a)

(b)

Fig. 1. The two types of slices. (a) Spinal canal completely surrounded by
bone. (b) Spinal canal partially surrounded by bone.

tecture consisting of the ASM and the plan solver. Following
this description, the low-level (atomic) image operators are de-
scribed in detail. In the experimental section, we report the re-
sults obtained by applying our approach to the CT images ob-
tained from 23 patients before they underwent radiation therapy.
This paper ends with a discussion of the results and issues for
future research.

II. K NOWLEDGE GUIDED IMAGE PROCESSING

The anatomical information present in our image material is
very complex and hard to formalize in way that makes com-
puter-based image interpretation feasible. As argued in theIn-
troductionsection, our image material is characterized by a large
amount of inter-patient variation. This variation makes it diffi-
cult to develop standardized low-level image processing algo-
rithms that make feasible an automatic detection of the spinal
cord in CT images. Instead, we present a novel, knowledge-
based top-down approach to image interpretation. Our approach

was originally inspired by the manner in which a radiologist and
radiotherapist interpret the CT images before the actual radio-
therapy is planned.

A. Image Acquisition and Interpretation

In clinical routine, the radiotherapist performs a request con-
taining the questions which should be resolved by the radiolog-
ical examination. Examples of questions are: where is the tumor
located? how far is it from the spine? are there other healthy tis-
sues that will be exposed to radiation? etc.

The image acquisition is performed according to a standard
protocol, which contains general guidelines for how CT images
should be obtained for planning of radiotherapy. The details
of an acquisition are chosen such that the tumor of the partic-
ular patient is visualized in the best possible way. In general, a
number of aspects should be taken into account in order to ac-
quire CT images in such a way that the relevant findings can be
established. Wegener [9] points out that there is a strong rela-
tionship between what region, organ or lesion is examined and
how the image should be acquired, including imaging parame-
ters (slice thickness, slice interval, scanning time), and contrast
administration (presence/type of contrast agent, injection speed,
concentration).

After the CT images have been acquired, the interpretation
is performed by a radiologist and a radiotherapist in concert.
The image assessment relies on both morphological and densit-
ometric findings. Grimnes mentions a number of general aspects
that influence the interpretation of CT images [10]:

— the typical size and shape of the objects (bones, organs,
and other tissues);

— the variation in size and shape of the objects;
— the expected Hounsfield unit (HU) value range associ-

ated with each tissue;
— the variation in the HU value range associated with

each tissue;
— typical response of an organ to the contrast tracer that

is used;
— organs and blood may change their expected HU range

in light of disease;
— biological variation;
— and social context.

The radiological analysis results in asynthesisof the clini-
cally relevant findings present the CT images, while taking the
abovementioned aspects into account. The ultimate goal of any
computer system for image interpretation should be to produce
such an image synthesis, either automatically or in an interac-
tive manner, e.g., through a dialogue with the radiologist.

B. Existing Approaches to Knowledge-Based Image
Interpretation

The literature on computer-based image interpretation de-
scribes a large number of architectures, systems and approaches.
Among the conventional approaches for image interpretation,
some focus on architectural aspects of the scene (the spatial
configuration composed by the objects that are present); in
other approaches an extensive knowledge base and an advanced
reasoning strategy form the major components [11]–[14]. Also
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TABLE I
RELATIONSHIPSBETWEEN STRUCTURES

probabilistic systems were developed for knowledge-guided
image interpretation [15]–[17]. Several blackboard and other
knowledge-based systems were developed specifically for
interpretation of medical images: The ERNEST system has
been developed for interpretation of scintigraphic images and
magnetic resonance (MR) images [18]. The system VIA-RAD
[19] applies four diagnostic strategies, obtained from the
radiological domain, to perform image interpretation. Brownet
al. [20] present a knowledge-based system for lung detection
in CT images. A system for object recognition in CT images
of the brain is presented in [21]. An architecture has been
developed for interpretation of abdominal CT images [22]. A
task-based architecture to interpretation of MR images of the
brain is introduced by Gonget al. [23].

In computer-based systems for interpretation of medical im-
ages, one or more of the following archetypes of knowledge may
be modeled [24]:

—structural knowledge, which can contain information about
the physical world (human anatomy, e.g., normal structures such
as lungs, spinal canal, lamina, spinal cord, thorax, etc.);

—dynamic knowledge, which can contain information about
possible normal and abnormal processes (human physiology
and pathology);

—procedural knowledge, which divides a request (e.g., image
synthesis) into a sequence of subtasks that can be performed by
specific image processing algorithms.

In some applications, a satisfactory image synthesis can be
obtained from solely one type of knowledge. For example, in
perfusion analysis of bone tumors dynamic knowledge is suffi-
cient for making a distinction between viable tumor and necrosis
[25]. In other applications, all three types of knowledge may be a
prerequisite for a successful image synthesis. Spinal cord detec-
tion and subsequent planning of radiotherapy rely primarily on
structural knowledge components: where is the tumor located,

the spine, etc., and on the procedural knowledge that is needed
to describe how the CT images should be analyzed [26], [27].

C. Knowledge Representation in Medical Image Analysis

We will present an approach for semi-automatic image inter-
pretation that uses a knowledge base to link different low-level
image processing algorithms to a particular request. For a solu-
tion of the problem addressed—spinal cord detection—a combi-
nation ofstructuralandproceduralknowledge suffice, because
the pathologic growth process of the tumor does not have to be
taken into account. This demarcation implies that our knowl-
edge base should contain medical knowledge about organs and
possible pathologic structures, i.e., components of the tumor.
The knowledge-base is used to guide the image interpretation
but also to specify the parameters of the basic algorithms. The
architecture presented here is inspired byframesystems [28].
Each anatomical structure is represented as a prototype, and
its properties asslots, which may obtain values by attached
demons.

Structural Knowledge:The core of our system is the
so-called ASM, which was presented earlier in [8]. A set of
properties (related to shape, position, densitometric ranges) is
used to characterize each of the normal structures, the organs,
bones and the vascular system, that are represented in the ASM.
The spatial arrangement of these objects is represented as a
semantic network. A very simple grammar was also introduced
that makes it feasible to express the semantic relations that
pertain to our application, see Table I.

Procedural Knowledge:The structural knowledge base is
merged with a task oriented architecture, theplan solver, which
contains the procedural knowledge that is needed to perform
the image interpretation. The involved clinicians make use of
so-called reference objects (e.g., body or lamina) to direct their
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Fig. 2. Plan for a task: general architecture in the case of spinal cord
identification.

focus of attention. Although the architecture of the plan solver
was originally inspired by the approach followed by the in-
volved clinicians, the task-based structure also makes it possible
to recognize and locate complex objects while benefiting from
more simple (basic) object detections. Algorithms developed
for the recognition of complex objects use so-calledreference
objectsto set their initial configuration or constrain the final
solution.

The task oriented architecture is responsible for running
the plan solver, which dispatches a task, e.g., detect spinal
canal, into subtasks [23]. Which subtask should be dispatched,
dependsthe reference objects. Object is reference object for
Object if:

• there is a direct, spatial relation betweenObject and
Object (e.g.,isNeighbor, isInside), and

• Object has an segmentation algorithm that does not de-
pend onObject . Hence,Object can be detected without
any knowledge ofObject .

When the plan-solver is called with the requestFind Object ,
it identifies the subtasks that should be performed in order to
fulfill the request, i.e., which objects are reference objects to
Object . The list with reference objects found is the list with
the subtasks to be performed. The plan solver module relies on
a global positioning system (along the axes ), (Fig. 5)
which maps each of the detected organs to world coordinates.

III. A NATOMICAL STRUCTURESMAP

The ASM establishes a number of spatial relations between
the objects that are typically distinguished in the CT images
used for planning of radiotherapy in our clinic. The architec-
ture of the ASM lends its inspiration from frame systems, a
well-known concept in the artificial intelligence literature. We
chose to represent the anatomical information in two–dimen-
sional (2-D) slices. More specifically, the ASM represents spa-
tial relations between the objects (e.g., spine, lamina, and tumor)
as well as the general category of each object: bone, air and tis-
sues (see Fig. 3). We discern these particular categories of tis-
sues for the following reasons. Objects belonging to the first two
categories have either a very high or a very low HU level (bones
versus, e.g., the air compartment of a lung). For these two types
of objects, a threshold-based technique is in most cases suffi-
cient for a reliable segmentation result. Tissues (e.g., organs),
on the other hand, cannot be identified by thresholding within a
specific HU range. For objects belonging to this third category,
a reliable segmentation needs to be based on two kinds of infor-
mation: the locations of the already detected reference objects
and the results of texture segmentation.

The main object represented is thebody contour, which
comprises other organs. It has a so-calledindependentsegmen-
tation scheme as it is possible to detect the body by a basic
image processing algorithm, in this case by thresholding (see
Section V-A-1).

The structures that are more difficult to segment include the
spine, the lamina and the spinal canal. The spine contains mainly
bone so it has a very high HU range, and thresholding is used to
detect it. All the subparts of the spine consist of mainly bone
cortex so a threshold method is used to detect these objects.
The spinal canal consists mainly of tissue but is completely sur-
rounded by the spine, i.e.,Spinal CanalIsInsideSpine. We use a
region growing scheme to segment it, chiefly because the border
of the spinal canal has a high contrast compared with the sur-
rounding bone (difference HU bone-tissue), see Section V-A-3.

Finally, we represent the lung information, the ribs and any
lung tumors. Our approach to lung tumor detection is described
in [29].

IV. THE PLAN SOLVER

The ASM is used as aid when partitioning a request (e.g.,
locate spine) into subtasks and further into atomic image
processing tasks that are performed by dedicated routines. This
hierarchical partitioning takes place in theplan solvermodule,
which links the spatial relations in the ASM with atomic image
processing algorithms. The plan solver uses aninheritance
schemeto determine the appropriate segmentation approach for
a particular object or tissue (see Fig. 4). An object connected
with another (reference) object by anisA relationship inherits
the segmentation method of that object.

We make a distinction between different types of atomic seg-
mentation methods that are used for object recognition in our
application: the threshold-based methods (for the bones in this
case, but also for the lungs in relation to lung tumors) and region
based methods (for the spinal canal in this case).
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Fig. 3. Relationships between structures, theASM.

For the threshold-based methods, it is important to restrict
the area to which they are applied. This is accomplished by
using so-called reference objects. Reference objects are speci-
fied by the following relations in the ASM:isAtLeft , isAtRight ,
isInside and isSurrounded, which are applied in a recursive
top-down detection procedure.

For region based approaches, the reference objects are
found between the objects with the relationshipisNeighbor
or isVerticalAxis. When a certain (sub)requestFind Object
is dispatched, the plan solver tries to fulfill the request by
choosing the appropriate segmentation methods. These are
either specified directly (for certain organs like the spinal
canal, which is detected by region growing), or indirectly by
inheritance from the reference objects by the relationshipisA.
Depending on the applicability of the chosen segmentation
method on the particular image slice, the reference objects are
located successfully.

We illustrate the functionality of the plan solver by two ex-
ample requests:Find LaminaandFind Spinal Canal. The first
object,Lamina, does not have its own dedicated segmentation
methods (no demon present) so Lamina is found by the inheri-
tance structure based on the linkisA. LaminaisA Spine, which
also does not have its own dedicated segmentation method. Fi-
nally, LaminaisA Bonewhich has a thresholding segmentation
method attached. AsLamina is connected by the linkisA to
Bonevia Spine, Laminais segmented by thresholding. The in-

ference mechanism proceeds by looking for the objects linked to
Laminaby the relationisInside. The only object whereLamina
is inside, is the body (body contour), which this way becomes
a reference object forLamina. So the taskFind Laminahas as
subtasks:Find Body Contourandthresholding, the latter takes
place only inside theSpine.

In the second example,Find Spinal Canal, a dedicated seg-
mentation method is specified: region based segmentation. So
we are looking for the objects which could give us a starting
point for the region growing algorithm. Thus, we are looking for
the objects connected with relationshipsisNeigbor, isAtVerti-
calAxis, which areBody ContourandLamina. Body contourhas
its own segmentation scheme, which is why it is a reference ob-
ject for theSpinal Canal. TheLamina, as it is presented earlier,
has as reference objectBody Contour, which does not involve
theSpinal Canal. So theLamina is the second subtask for the
taskFind Spinal Canal.

V. SPINAL CORD THREE-DIMENSIONAL (3–D) DETECTION

The 3-D image interpretation method presented in this paper
was developed in an attempt to model certain aspects of the
knowledge that is used for human interpretation of CT images
of the thorax. An organ of interest is segmented by identifying in
each slice the contours of interest, and by using information ob-
tained from adjacent slices to improve the result further. For the
spinal cord, the occasional presence of spine around the spinal
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Fig. 4. Relationships between the ASM and theplan solver. All relationships between structures are presented, and on theplan solverside segmentation methods
as well as parameters for each of it. Also the connections between structures and corresponding segmentation methods are presented.

canal complicates the delineation of its contour. Moreover, the
same segmentation scheme cannot be used in all the slices. In
this section, we first present the 2-D segmentation of spinal cord,
which is based on the ASM and the plan solver that are ap-
plied to the slices in which the spinal canal is completely sur-
rounded by spine. Subsequently, the procedure responsible for
detection of the 3-D spinal canal contour is described. Finally,
the methods used in the case of failure of the standard proce-
dures (in the slices where the spinal canal is not surrounded by
spine) are presented.

A. Two-Dimensional (2-D) Spinal Cord Detection Based on
the ASM

For the task of identifying the spinal cord contour in a slice,
the plan solver is dispatched. Its subtasks rely on information
from the ASM. Fig. 2 illustrates how the spinal cord is being
detected by our knowledge-based approach. The structures that
aid the detection of the spinal cord are body contour, a region of
the spine (called lamina), and the spinal canal (see also Fig. 5).

1) Body Contour Identification:The transition between the
body (contour 1 in Fig. 5) and the outside air is very strong,



1510 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 12, DECEMBER 2002

Fig. 5. Contours detected for spinal cord detection. FirstBody contouris
detected, thenLamina, followed bySpinal Canaland finallySpinal Cord.

which makes it rather straight-forward to find the contour
around the thorax. Moreover, the body is generally the only
object in the image. The voxels with a gradient exceeding a
threshold value are likely to form part of the border between
body and air. Based on correlational analysis of the HU his-
tograms of the body and air in a pilot study, the value ofwas
found. The algorithm 1 is used to delineate the contour around
the body.

Algorithm 1 Body Contour Identification

Require: Image
Ensure: the abdomen contour
1: compute the gradient of the image using a Sobel-like oper-

ator;
2: in the middle column of the image, search the first pixel

which has the gradient higher than a threshold;
3: this is the first point on the body contour;
4: starting from this point, follow in the clock-wise direction the

high gradient, until it reaches the first point of the contour.

Because of its importance (all the other structures areInside
the body contour), the body contour identification is a subtask
which is performed to accomplish each other request.

2) Lamina Identification: The lamina contour (contour 2 in
Fig. 5) uses body contour as a reference object. In the ASM, the
segmentation scheme associated with the lamina is a threshold
operation. The threshold operator is applied to the voxels that
occur inside the body contour. The lamina has a very high HU
range (650–1200 HU). This is not the only structure with such
a high intensity range. Other structures like thesternumand
scapulamight also be detected by application of a threshold op-
erator. By restricting the threshold operator to a smaller region

(a)

(b)

Fig. 6. MIC in the spinal canal polygon. (a) The Voronoi Diagrams used for
detection of the medial axis, which gives the center of MIC. (b) This solution
applied for spinal cord detection.

of the abdomen (centered at the medial axis), thresholding in
most cases finds the lamina accurately.

3) Spinal Canal Detection in Two Dimensions:The con-
tours of the lamina and thorax are used to detect the spinal canal
(contour 3 in Fig. 5). There is a strong transition from lamina to
the spine (large HU difference bone-tissue). Consequently, a re-
gion growing algorithm is used [30]. Two problems are related
to the region growing algorithm. First, the homogeneity of the
pixel intensities in the region may not be guaranteed. To cope
with this problem, a histogram based method [31] is combined
with thea priori knowledge about the typical HU range of the
spinal canal. A pilot experiment has been performed to find the
optimal range of HU values.

A second problem is how to set the seed point—the starting
point of the region growing algorithm—automatically. This is
accomplished by using the relative locations between body con-
tour and lamina in relation to the spinal canal. More specifically,
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the spinal canal and the spine have the same medial axis (rep-
resented by the relationshipisAtMedialAxis ). So, by detection
of lamina(which is isInside the spine), the position of the seed
point for the spinal canal is obtained (being on the medial axis
and higher than the top limit oflamina).

4) Spinal Cord Detection in two dimensions:The problem
of spinal cord detection (contour 4 in Fig. 5) reduces to finding
the maximal inscribed circle in the polygon that represents the
spinal canal (see also Fig. 6). The problem is solved by com-
puting the skeleton of the polygon using an efficient algorithm
[complexity ], which was presented in [32] and
[33].

B. Spinal Canal Detection in Three Dimensions

The problem of 3-D spinal canal detection is based directly
on the procedure for spinal canal detection in two dimensions
presented in Section V-A-3. However, this scheme cannot be
applied successfully to all slices because the spinal canal is not
always surrounded by the spine. Instead, the algorithm for 3-D
spinal canal detection first identifies the spinal canal each slice
using the algorithm 2. The first step is to apply the 2-D algorithm
presented in the previous section to identify the spinal canal in
the first slice. It uses no information about whether the spinal
canal is surrounded completely by bone. A procedure verifies
(line 4) whether the spinal canal was identified correctly. This
procedure uses information about the position, the intensity and
the area of the region detected by the 2-D algorithm. If the al-
gorithm failed to identify the spinal canal correctly in the first
slice, the same 2-D algorithm is applied to the next slices (lines
4–8), until it succeeds in finding the contour of the spinal canal
in as many slices as possible.

Once a contour around the spinal canal has been found, the
algorithm uses it as a reference in the neighboring slices in two
ways: First, it is used to verify the candidate contour for spinal
canal in the adjacent slices (lines 14, 28; assuming a small dif-
ference between the contours of the spinal canal in two consec-
utive slices). The second way is to use a spinal canal contour as
information to guide the segmentation scheme in the adjacent
slice (in case the 2-D algorithm fails to identify the spinal canal
correctly—lines 13, 27). These two applications of the spinal
canal contour already identified are presented in the next sec-
tion. In the th slice, the contour of the spinal canal is detected
(line 10). The 3-D algorithm proceeds from the
and slices, applying the 2-D detection
algorithm. In case of failure, it chooses one of the alternative
methods presented in the next section. The evolution of the al-
gorithm in two consecutive slices is illustrated in Fig. 7.

Algorithm 2 Spinal Canal 3-D Detection

Require: medical exam 3-D, nrTotalSlices
Ensure: the list with spinal canal con-

tour identified in all the slices of the
exam,

1: SetActiveSlice (1)
2: DetectSpinalCanalContourUsin-

gASM()

3:
4: while NOT VerifyCandidateSpinal-

Canal(SCC) do
5:
6: SetActiveSlice
7: DetectSpinalCanalContourUsin-

gASM()
8: end while
9: /*in the slice , spinal canal is iden-

tified*/
10: ListSCContours
11: for to 1 do
12: SetActiveSlice
13: DetectSpinalCanalCon-

tour(SCC)
14: if NOT VerifyCandidateSpinal-

Canal then
15: /*spinal canal not correctly identi-

fied so use snakes*/
16 ModifyUsingSnake
17: end if
18:
19:
20: end for
21:
22: for to do
23: SetActiveSlice
24: DetectSpinalCanalContou-

rUsingASM ()
25: if NOT VerifyCandidateSpinal-

Canal then
26: /*spinal canal not correctly identi-

fied with ASM*/
27: DetectSpinalCanalCon-

tour(SCC)
28: if NOT VerifyCandidateSpinal-

Canal then
29: /*spinal canal not correctly iden-

tified so use again snakes*/
30: ModifyUsingSnake
31: end if
32: end if
33:
34:
35: end for

Two procedures are used to check the results of the spinal
cord detection algorithms. The first one (line 4),VerifyCandi-
dateSpinalCanal(SCC), uses specifica priori knowledge about
the spinal canal region:position, area, intensity, andshape. If
the properties of the candidate comply with the predefined pa-
rameters of our model, the region is recognized asspinal canal,
otherwise it is rejected.

The second procedure (line 14)VerifyCandidateSpinal-
Canal(SCC, SCCNew) uses a contour obtained in an adjacent
slice, against which it verifies the properties of the new contour
detected in the current slice. If the differences between the two
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Progress of our algorithm for spinal cord identification. (a) In the first slice identify the body contour. (b) Find a spine part. (c) Using the bone part
identified, find the seed for the Region Growing, which identifies the spinal canal. (d) Apply MIC algorithm to find the spinal cord. (e) Propagate thespinal canal
contour in the next slice and improve it using snakes. (f) Apply again MIC to find the spinal cord.

contours with respect to:position, area, intensity, andshape,
are smaller than a set of prespecified ranges, the new candidate
contour is recognized as being thespinal canal.

C. When Segmentation of the Spinal Canal Fails

In case the general scheme based on the default algorithms
applied by the plan solver fails to detect an appropriate contour
around the spinal canal, the system backtracks and uses either: a
region based method or snakes. Both use the (already approved)
contour around the spinal canal detected in an adjacent slice for
initialization.

1) Finding the Spinal Canal by Region Growing:Occa-
sionally, the general scheme for detection of the spinal canal

fails because it cannot identify the lamina region, even when
the spinal canal is completely surrounded by bone cortex. In
these cases, a region based segmentation technique works well
and is applied to the slice (lines 13, 27). The problem is to find
the seed point for the region growing process. We use as seed
point the center of gravity of the spinal canal region identified
in an adjacent slice, thereby assuming spatial continuity of the
spinal canal. To compute the center of gravity of a region given
by a function , statistical moments are used

with (1)
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(in the continuous case) and

with

for the discrete case. Thus, the center of gravity is defined as

and

2) The Use of Snakes:In case the general scheme fails to
detect the spinal canal, e.g., because the spinal canal is not com-
pletely surrounded by the spine, the system uses a snake based
method [34].

Given the spline , the energy function of
the snake is defined as

(2)

represents the internal energy of the spline, composed of a
first-order term controlled by , which makes the snake act
like a membrane, and the second-order term controlled by,
making the snake to act like a thin plate

(3)

is given by

(4)

so that the snake is attracted by the contours with large gra-
dients. Finally incorporates the external forces specified
by the user. The problem of initialization of the snake is solved
using the result obtained in an adjacent slice. We chose a greedy
strategy as in [35] to search for the best snake contour.

Combining these energy equations results in the snake algo-
rithm 3. The gradient is hereby approximated by a Sobel oper-
ator [31].

Algorithm 3 Snake General

Require: Image , snakes parameters , ,
window size, contour ,

Ensure: the contour modified
1: ComputeGradient
2:
3:
4: while NOT do
5: for to do
6: ModifyPoint(i, newX, newY)
7:
8: Evaluate
9: end for
10: if ConditionsFinishOk() then
11:
12: end if
13: end while
14: return

VI. EXPERIMENTS

We evaluated our knowledge-based approach by applying the
system consisting of the ASM and the plan solver on 3-D CT
datasets of 23 real patients, all scanned at theLa Chaux de Fonds
hospital in Switzerland. All 23 patients had a tumor present in
the thorax. After the CT examination, each patient underwent
radiotherapy in the hospital. Our population consisted of 9 male
and 14 female patients. Their age varied from 37 to 79 years with
a mean of 58 years and a median of 59 years. The number of
CT slices per exam varied from 9 to 97 with a mean of 45 slices
and a median of 38 slices. The images were obtained from a CT
scanner from Picker and were acquired with a slice thickness of
3 mm and an inter-slice distance of 3 mm.

We evaluated our approach according to two criteria:accu-
racyandcomputational cost. The accuracy is defined as the rel-
ative number of acceptable contours of a particular type that can
be detected in an exam. The computational cost is the total exe-
cution time (in seconds) required to find all contours of a partic-
ular type in an exam (one contour per slice). We distinguished
four types of contour: Spinal cord, Spinal canal, Lamina, and
(outer) Thorax. Whereas the computational time is straight-for-
ward to compute, medical expertise is needed to assess the con-
tours that were found by our system. A radiologist skilled in
radiotherapy planning was asked to accept or reject each con-
tour in each slice among all 23 patients. In our case, evaluation
was performed using a visual inspection of the contours pro-
jected on the CT image slices. The radiologist decides for each
of the contours obtained with our system whether it is located
precisely or not. The maximal deviation around the spinal cord
contour (measured as the distance perpendicular to the contour)
accepted by the radiologists is 1 mm.

A. Accuracy

In Table II, results of the experiments on the real clinical data
are shown. The accuracy is computed as the number of slices
in the exam in which the particular contour was located cor-
rectly. In Exam 1, for example, 91.8% of the contours were lo-
cated around the spinal cord with a sufficient precision. The av-
erage accuracy of the spinal cord contours among all patients
is 91.7%, the average accuracy per slice lies within the range
80% to 100%. The spinal canal is more difficult to detect. The
average detection accuracy among all patients is 85.3%, the av-
erage accuracy per slice lies within the range 60% to 100%. The
lamina is the most difficult structure to detect for our approach.
The average accuracy among the 23 patients is 72.1%, the range
is 33%–100%. Finally, the thorax is located correctly in all slices
among all 23 patients. The body is easy to detect because of the
sharp transition from the surrounding air to human tissue.

Among the four structures, the accuracy of each contour
is rather correlated between the spinal canal and spinal cord,
0.594, the correlation coefficients between the other types of
contours are all below 0.15.

Due to the parameters used for the snakes algorithm which
segments the spinal canal, the contours detected contain just
false positive regions. Then, by the use of MIC algorithm (the
maximum circle approximation for the spinal cord), occasion-
ally the spinal cord contours contain false positive as well.
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TABLE II
RESULTSFROM THE EVALUATION OF OUR SYSTEM USING THE CT IMAGES OF23 PATIENTS

In general, when the other contours were detected wrongly,
the major cause was the mislabeling of the neighboringrefer-
ence objectssuch as the lamina. The problems in most cases
arise in CT exams where the standard acquisition protocol had
not been followed such that one or more unexpected objects
(e.g., arms) were present in the images. The presence of such
objects affects the symmetry of the CT image.

B. Computational Cost

Our algorithms were implemented on a PC Windows ma-
chine, with a processor Pentium III 500-MHz, 512-MB RAM.
As presented in Table II, the spinal cord detection is obtained
practically in real time. The worst case is when the snakes are
used in all the slices. The required amount of interaction is min-
imal and most often consists of manual correction of the errors
in a couple of slices.

In the Anatomic Structures Map, about ten different struc-
tures are represented so the query process performed by the plan
solver terminates quickly. The most time consuming routine is
the Snake algorithm, which optimizes the location of the contour
by minimizing the total energy. All other routines are performed
in less than a second per slice (0.3–0.5 s) in our current appli-
cation. The snake algorithm is only applied to slices where the
spinal cord is not surrounded by the spinal canal, which boils
down to about half of the slices in a typical patient.

VII. D ISCUSSION

The major contribution of this article is that a top-down
knowledge-based system has been developed for flexible
interpretation of CT images. Our system can cope with a large
amount of inter-patient variation. Not only is the size and
shape of the tumor unique to each patient, also the acquisition
parameters of the CT scan vary considerably. The ASM is a
means to represent, in a compact form, important fragments
of the anatomic knowledge that is used by a radiologist while
interpreting the CT images. The plan solver contains the
procedural knowledge: how to detect particular anatomical
structures one-by-one. The knowledge-based architecture often
makes it possible to cope with exceptional conditions which
occur in a specialized clinic. Even if our approach fails, it
is possible for the radiologist to “take-over” and correct the
wrongly placed contours of, e.g., the lamina. Moreover, it
is possible to identify the cause(s) of failure because of the
transparent knowledge-based architecture.

The major drawback of our approach is the time it takes to for-
malize the anatomical and procedural knowledge that is needed
to implement the ASM and the plan solver. This problem is well-
known from the research in expert systems and has been called
the knowledge elicitation bottleneck. Although the ASM may
partly be reused for, e.g., automatic interpretation of MR images
of the thorax, reverse engineering would be required to tailor
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the plan solver such that is applies the appropriate atomic (seg-
mentation) algorithms. It is clear that a different image modality
will, in general, require different low-level operators to find the
same anatomic structures. We furthermore wish to add that the
rather confined macro-anatomy of the human thorax makes it
well-suited for representation in a frame-like hierarchical rep-
resentation scheme such as the ASM. Representation of, e.g.,
the human vascular system would be virtually impossible.

A final question addresses the transferability of the developed
method to other hospitals. TheDICOM standard (respected by
our system), and the use of HU should work in a hospital with
well-calibrated CT scanners. However, we are about to test the
system in another hospital in Switzerland. About the feature
of the system, probably the most important one is the use of
a knowledge-based image processing philosophy, keeping in
mind that relying solely on the classical image processing al-
gorithms are insufficient for detecting automatically anatomical
structures in CT images. Another important aspect of this ap-
proach is the way the 3-D processing is performed, resembling
the procedure performed by the radiologist. Finally, this system
was tested on images from 23 real patients obtained from a local
hospital in Switzerland, and the results were evaluated by spe-
cialists in radiology.

VIII. C ONCLUSION

Radiotherapy of malignant tumors located in the vicinity of
the is spinal cord requires a very accurate planning to avoid
causing unnecessary damage in this vital organ. The spinal cord
is a highly radiosensitive organ; even moderate doses of radia-
tion can cause different complications such as paralysis of the
patient. In this article, we present a knowledge-based approach
to interpretation of CT images. The approach is based on two
closely linked knowledge bases: the ASM and the plan solver.
The former represents structural (static) knowledge of the macro
anatomy in the human thorax. The latter represents the proce-
dural knowledge—the scripts that are used for detection of the
different objects of interest. The plan solver combines atomic
and composite image processing operators using an inheritance
scheme. Which (composite) operators inherit an atomic oper-
ator, say a snake algorithm, is derived from the ASM, which
contains the structural knowledge.

The knowledge-based approach was implemented on a stan-
dard PC. The system was subsequently validated on CT image
data from 23 patients who were to undergo radiotherapy. The
plan solver was used to locate the following four kinds of ob-
jects: the spinal cord, the spinal canal, the lamina, and the body
(outer thorax). The highest accuracy was obtained for the body,
which was located correctly in all slices among the 23 patients.
The spinal canal was located with an accuracy of 92%, the spinal
canal with an accuracy of 85% and the lamina with an accuracy
of 72%.

The major advantage of our knowledge-based system com-
pared with state-of-the-art low-level solutions lies in its trans-
parency and its flexibility. The system is transparent to the ra-
diologist because parts of his/her medical knowledge is repre-
sented in the ASM and the plan solver. Transparency makes it
easier to take over from the system in case the identification of

the objects fails. Flexibility is required because the scan pro-
tocol varies among the patients depending on the location and
size of the tumor.

REFERENCES

[1] H. K. Awwad, Radiobiological and Physiological Perspectives—The
Boundary Zone Between Clinical Radiotherapy and Fundamental
Radiobiology and Physiology. Norwell, MA: Kluwer Academic,
1990.

[2] E. J. Hall,Radiobiology for the Radiologist. Baltimore, MD: Williams
& Wilkins/Lippincott, 2000.

[3] T. L. Philips and S. A. Leibel, Textbook of Radiation On-
cology. Philadelphia, PA: Saunders, 1998.

[4] J. Bijhold, K. G. A. Gilhuijs, M. vanHerk, and H. Meertens, “Radiation-
field edge-detection in portal images,”Phys. Med. Biol., vol. 36, no. 12,
pp. 1705–1710, 1991.

[5] K. G. A. Gilhuijs, P. J. H. vandeVen, and M. vanHerk, “Automatic three-
dimensional inspection of patient setup in radiation therapy using portal
images, simulator images, and computed tomography data,”Med. Phys.,
vol. 23, no. 3, pp. 389–399, 1996.

[6] G. M. te Brake and N. Karssemeijer, “Segmentation of suspicious den-
sities in digital mammograms,”Medical Physics, vol. 28, no. 2, pp.
259–266, 2001.

[7] B. van Ginneken and B. M. ter Haar Romeny, “Automatic segmentation
of lung fields in chest radiographs,”Med. Phys., vol. 27, no. 10, pp.
2445–2455, 2000.

[8] N. Archip and P.-J. Erard, “Anatomical structures map—A way of
encoding medical knowledge in a task oriented computed tomography
image analysis,” inProc. 2000 Int. Conf. Mathematics and Engineering
Techniques in Medicine and Biological Sciences, Las Vegas, NV, June
2000, pp. 377–383.

[9] O. Wegener,Whole Body Computed Tomography, 2nd ed. Oxford,
U.K.: Blackwell Scientific, 1992.

[10] M. J. F. Grimnes, “ImageCreek: A knowledge level approach to
case-based image interpretation,” Ph.D. dissertation, Univ. Trondheim,
Trondheim, Norway, 1998.

[11] W. Menhardtet al., “Knowledge based interpretation of cranial MR
images,” Philips GmbH, Forschungslaboratorium Hamburg, Hamburg,
Germay, Tech. Rep., 1990.

[12] M. Sonka, G. Sundaramoorthy, and E. A. Hoffman, “Knowledge-based
segmentation of intrathoracic airways from multidimensional high reso-
lution ct images,” inProc. Medical Imaging 1994: Physiology and Func-
tion From Multidimensional Images, pp. 73–85.

[13] G. L. Vernazzaet al., “A knowledge-based system for biomedical image
processing and recognition,”IEEE Trans. Circuits Syst., vol. 34, pp.
1399–1416, Nov. 1987.

[14] A. Zahalka and A. Fenster, “An automated segmentation method for
three-dimensional carotid ultrasound images,”Phys. Med. Biol., vol. 46,
pp. 1321–1342, 2001.

[15] L. Jennifer, T. E. Boes, C. Weymouth, and R. Meyer, “Multiple organ
definition in ct using a Bayesian approach for 3-D model fitting,” in
Vision Geometry IV, Proc. SPIE 2573, 1995, pp. 244–251.

[16] V. P. Kumar and U. B. Desai, “Image interpretation using Bayesian net-
works,” IEEE Trans. Pattern Anal. Machine Intell., vol. 18, pp. 74–77,
Jan. 1996.

[17] R. Tombropouloset al., “A decision aid for diagnosis of liver lesions
on MRI,” Section on Medical Informatics, Stanford Univ. Sch. Med.,
Stanford, CA, Tech. Rep., 1994.

[18] F. Kummertet al., “Control and explanation in a signal understanding
environment,”Signal Processing, vol. 32, pp. 111–145, 1993.

[19] E. Rogers, “Via-rad: A blackboard-based system for diagnostic radi-
ology,” Artificial Intell. Med., vol. 7, pp. 343–360, 1995.

[20] M. S. Brownet al., “Knowledge-based segmentation of thoracic com-
puted tomography images for assessment of split lung function,”Med.
Phys., vol. 27, no. 3, pp. 592–598, 2000.

[21] H. Li, R. Deklerck, B. De Cyper, A. Hermanus, E. Nyssen, and J. Cor-
nelius, “Object recognition in brain ct-scans: Knowledge based fusion
of data from multiple feature extractors,”IEEE Trans. Med. Imag., vol.
14, pp. 343–360, June 1995.

[22] K. Englmeieret al., “Model based image interpretation of spiral ct scans
of the abdomen,” inArtificial Intell. Med.: IOS Press, 1993, pp. 44–51.

[23] L. Gong and C. A. Kulikowski, “Composition of image analysis pro-
cesses through object-centered hierarchical,”IEEE Trans. Pattern Anal.
Machine Intell., vol. 17, Oct. 1995.



1516 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 12, DECEMBER 2002

[24] M. Egmont-Petersen, “Mental models as cognitive entities,” inProc.
Scandinavian Conf. Artificial Intelligence, B. Mayoh, Ed., 1991, pp.
205–210.

[25] M. Egmont-Petersen, P. C. W. Hogendoorn, R. v. d. Geest, H. A.
Vrooman, H. J. v. d. Woude, J. P. Janssen, J. L. Bloem, and J.
H. C. Reiber, “Detection of areas with viable remnant tumor in
postchemotherapy patients with Ewing’s sarcoma by dynamic con-
trast-enhanced mri using pharmacokinetic modeling,”Magn. Reson.
Imag., vol. 15, no. 5, pp. 525–535, 2000.

[26] “Prescribing, recording and reporting photon beam therapy,” Int. Com-
mission Radiation Units and Measurements, Bethesda, MD, 1993.

[27] J. A. Purdy and G. Starkschall,A Practical Guide to 3D Planning and
Conformal Radiation Therapy. Sun Prairie, WI: Ed. Advanced Med-
ical Publishing, Inc., 1999.

[28] P. Jackson,Introduction to Expert Systems. Reading, MA: Addison-
Wesley, 1999.

[29] N. Archip, P. J. Erard, J.-M. Haefliger, and J. Germond, “Lung metas-
taces detection and visualization on ct images—A knowledge-based
method,”J. Visualization Comput. Animation, vol. 13, no. 1, pp. 65–76,
2002.

[30] R. Adams and L. Bischof, “Seeded region growing,”IEEE Trans. Pat-
tern Anal. Machine Intell., vol. 16, pp. 641–647, June 1994.

[31] J. R. Parker,Algorithms for Image Processing and Computer Vi-
sion. New York: Wiley Computer, 1997.

[32] M. Held, “Vroni: An engineering approach to the reliable and efficient
computation of Voronoi diagrams of points and line segments,”Compu-
tational Geometry, vol. 18, pp. 95–123, 2001.

[33] D. T. Lee, “Medial axis transformation of a planar shape,”IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-4, pp. 363–369, Apr. 1982.

[34] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,”Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, 1988.

[35] D. J. Williams and M. Shah, “A fast algorithm for active contours and
curvature estimation,”CVGIP: Image Understanding, vol. 55, no. 1, pp.
14–26, 1992.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


